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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 

with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 

found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 

find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 

to show all working.

1. [Total mark:  23]

 Part A [Maximum mark:  11]

 The area of an equilateral triangle is 1 cm2.  Determine the area of

 (a) the circumscribed circle; [8 marks]

 (b) the inscribed circle. [3 marks]

 Part B [Maximum mark:  12]

 The points A, B  have coordinates ( , ) , ( , )1 0 0 1  respectively.  The point P( , )x y  

moves in such a way that AP BP= k  where k ∈ +
� .

 (a) When k =1, show that the locus of P is a straight line. [3 marks]

 (b) When k ≠ 1, the locus of P is a circle.

  (i) Find, in terms of  k , the coordinates of C, the centre of this circle.

  (ii) Find the equation of the locus of C as  k  varies. [9 marks]
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2. [Total mark:  25]

 Part A [Maximum mark:  16]

 The graph  H  has the following adjacency matrix.

 

A B C D E F G

A

B

C

D

E

F

G

0 1 0 0 0 0 1

1 0 1 1 0 1 0

0 1 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 1 0 0 0

0 1 0 0 0 0 1

1 0 00 0 0 1 0





























 (a) (i) Show that  H  is bipartite.

  (ii) Draw  H  as a planar graph. [3 marks]

 (b) (i) Explain what feature of  H  guarantees that it has an Eulerian circuit.

  (ii) Write down an Eulerian circuit in  H . [3 marks]

	 (c)	 (i)	 Find	the	number	of	different	walks	of	length	five	joining	A	to	B.	

  (ii) Determine how many of these walks go through vertex F after passing 

along two edges. [6 marks]

 (d) Find the maximum number of extra edges that can be added to  H  while keeping 

it simple, planar and bipartite. [4 marks]

 Part B [Maximum mark:  9]

 (a) Find the smallest positive integer  m  such that 3 1 22m ≡ (mod ) . [2 marks]

 (b) Given that 3 2249 ≡ n (mod )  where 0 21≤ ≤n ,	find	the	value	of		n . [4 marks]

 (c) Solve the equation 3 5 22x ≡ (mod ) . [3 marks]
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3. [Maximum mark:  29]

 (a) (i) Show that 
d

dθ
θ θ θ θ θsec tan ln (sec tan ) sec+ +( ) = 2 3 .

  (ii) Hence write down sec3∫ θ θd . [5 marks]

 (b) Consider the differential equation ( )1 12 2+ + = +x
y

x
xy x

d

d
 given that y =1 

when x = 0 .

	 	 (i)	 Use	Euler’s	method	with	a	step	length	of	0.1	to	find	an	approximate	value	
for  y  when x= 0 3. .

  (ii) Find an integrating factor for determining the exact solution of the 

differential equation.

  (iii) Find the solution of the equation in the form y f x= ( ) .

	 	 (iv)	 To	how	many	significant	figures	does	the	approximation	found	in	part	(i)	
agree with the exact value of  y  when x= 0 3. ? [24 marks]

4. [Total mark:  25]

 Part A [Maximum mark:  12]

 The function f :� � � �× → × 	 is	 defined	 by	 X AX� , where X =









x

y
 and 

A =










a b

c d
 where  a ,  b ,  c ,  d  are all non-zero.

 (a) Show that  f  is a bijection if  A  is non-singular. [7 marks]

 (b) Suppose now that  A  is singular.

  (i) Write down the relationship between  a ,  b ,  c ,  d .

  (ii) Deduce that the second row of  A 	is	a	multiple	of	the	first	row	of		A .

  (iii) Hence show that  f  is not a bijection. [5 marks]

(This question continues on the following page)
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(Question 4 continued)

 Part B [Maximum mark:  13]

  Consider the group { , }S
m

+  where S m m m= − ∈ ≥{ , , ... }, ,0 1 2 1 3�  and +m  

denotes addition modulo  m .

 (a) Show that { , }S m+  is cyclic for all  m . [3 marks]

 (b) Given that  m  is prime,

  (i) explain why all elements except the identity are generators of { , }S m+ ;

	 	 (ii)	 find	the	inverse	of		x , where  x  is any element of { , }S m+  apart from the 

identity;

  (iii) determine the number of sets of two distinct elements where each element 

is the inverse of the other. [7 marks]

 (c) Suppose now that m ab=  where  a ,  b  are unequal prime numbers.  Show that 

{ , }S m+  has two proper subgroups and identify them. [3 marks]
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5. [Maximum mark:  18]

 (a) The continuous random variable  X  takes values only in the interval [ , ]a b  and  F  

denotes its cumulative distribution function.  Using integration by parts, show that:

  E X b F x x
a

b

( ) ( )= − ∫ d . [4 marks]

 (b) The continuous random variable  Y  has probability density function  f  given by:

  

f y y y

f y

( ) cos ,

( ) ,

= ≤ ≤

=

   0

        elsewhere

π

2

0 .

  (i) Obtain an expression for the cumulative distribution function of  Y , valid 

for 0 ≤ ≤y
π

2
.  Use the result in (a) to determine E Y( ) .

  (ii) The random variable  U 	 is	 defined	 by	 U Y n= , where n∈�+ . Obtain 

an expression for the cumulative distribution function of  U  valid for 

0
2

≤ ≤






u

nπ
.

  (iii) The medians of  U  and  Y  are denoted respectively by mu  and my .  

Show that m mu y

n= . [14 marks]


