

FURTHER MATHEMATICS STANDARD LEVEL PAPER 2

Monday 7 May 2012 (morning)

2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the *Mathematics HL and Further Mathematics SL* information booklet is required for this paper.
- The maximum mark for this examination paper is [120 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

-2-

1. [Total mark: 23]

Part A [Maximum mark: 11]

The area of an equilateral triangle is 1 cm². Determine the area of

(a)	the circumscribed circle;	[8 marks]					
(b)	the inscribed circle.	[3 marks]					
Part B [Maximum mark: 12]							
The points A, B have coordinates $(1, 0), (0, 1)$ respectively. The point $P(x, y)$ moves in such a way that $AP = kBP$ where $k \in \mathbb{R}^+$.							
(a)	When $k = 1$, show that the locus of P is a straight line.	[3 marks]					
(b)	When $k \neq 1$, the locus of P is a circle.						
	(i) Find, in terms of k , the coordinates of C, the centre of this circle.						

(ii) Find the equation of the locus of C as k varies. [9 marks]

2. [Total mark: 25]

Part A [Maximum mark: 16]

The graph H has the following adjacency matrix.

	А	В	С	D	Е	F	G	
А	(0	1	0	0	0	0	1	
В	1	0	1	1	0	1	0	
C	0	1	0	0	1	0	0	
D	0	1	0	0	1	0	0	
E	0	0	1	1	0	0	0	
F	0	1	0	0	0	0	1	
G	1	0	0	0	0	1	0	

(a) (i) Show that H is bipartite.

	(ii)	Draw H as a planar graph.	[3 marks]						
(b)	(i)	Explain what feature of H guarantees that it has an Eulerian circuit.							
	(ii)	Write down an Eulerian circuit in H .	[3 marks]						
(c)	(i)	Find the number of different walks of length five joining A to B.							
	(ii)	Determine how many of these walks go through vertex F after passing along two edges.	[6 marks]						
(d)	Find it sim	the maximum number of extra edges that can be added to H while keeping ple, planar and bipartite.	[4 marks]						
Part B [Maximum mark: 9]									
(a)	Find	the smallest positive integer <i>m</i> such that $3^m \equiv 1 \pmod{22}$.	[2 marks]						
(b)	Give	n that $3^{49} \equiv n \pmod{22}$ where $0 \le n \le 21$, find the value of <i>n</i> .	[4 marks]						
(c)	Solve	e the equation $3^x \equiv 5 \pmod{22}$.	[3 marks]						

https://xtremepape.rs/

[5 marks]

3. [Maximum mark: 29]

(a) (i) Show that
$$\frac{d}{d\theta} (\sec\theta \tan\theta + \ln(\sec\theta + \tan\theta)) = 2\sec^3\theta$$
.

- (ii) Hence write down $\int \sec^3 \theta d\theta$.
- (b) Consider the differential equation $(1+x^2)\frac{dy}{dx} + xy = 1 + x^2$ given that y = 1when x = 0.
 - (i) Use Euler's method with a step length of 0.1 to find an approximate value for y when x = 0.3.
 - (ii) Find an integrating factor for determining the exact solution of the differential equation.
 - (iii) Find the solution of the equation in the form y = f(x).
 - (iv) To how many significant figures does the approximation found in part (i) agree with the exact value of y when x = 0.3? [24 marks]

4. [Total mark: 25]

Part A [Maximum mark: 12]

The function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ is defined by $X \mapsto AX$, where $X = \begin{bmatrix} x \\ y \end{bmatrix}$ and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where a, b, c, d are all non-zero.

- (a) Show that f is a bijection if A is non-singular.
- (b) Suppose now that A is singular.
 - (i) Write down the relationship between a, b, c, d.
 - (ii) Deduce that the second row of A is a multiple of the first row of A.
 - (iii) Hence show that f is not a bijection. [5 marks]

(This question continues on the following page)

2212-7102

[7 marks]

[3 marks]

(Question 4 continued)

Part B [Maximum mark: 13]

Consider the group $\{S, +_m\}$ where $S = \{0, 1, 2...m - 1\}, m \in \mathbb{N}, m \ge 3$ and $+_m$ denotes addition modulo m.

- (a) Show that $\{S, +_m\}$ is cyclic for all m.
- (b) Given that *m* is prime,
 - (i) explain why all elements except the identity are generators of $\{S, +_m\}$;
 - (ii) find the inverse of x, where x is any element of $\{S, +_m\}$ apart from the identity;
 - (iii) determine the number of sets of two distinct elements where each element is the inverse of the other. [7 marks]
- (c) Suppose now that m = ab where a, b are unequal prime numbers. Show that $\{S, +_m\}$ has two proper subgroups and identify them. [3 marks]

5. [Maximum mark: 18]

(a) The continuous random variable X takes values only in the interval [a, b] and F denotes its cumulative distribution function. Using integration by parts, show that:

$$E(X) = b - \int_{a}^{b} F(x) dx . \qquad [4 marks]$$

(b) The continuous random variable Y has probability density function f given by:

$$f(y) = \cos y, \quad 0 \le y \le \frac{\pi}{2}$$
$$f(y) = 0, \qquad \text{elsewhere}$$

- (i) Obtain an expression for the cumulative distribution function of *Y*, valid for $0 \le y \le \frac{\pi}{2}$. Use the result in (a) to determine E(Y).
- (ii) The random variable U is defined by $U = Y^n$, where $n \in \mathbb{Z}^+$. Obtain an expression for the cumulative distribution function of U valid for $0 \le u \le \left(\frac{\pi}{2}\right)^n$.
- (iii) The medians of U and Y are denoted respectively by m_u and m_y . Show that $m_u = m_y^n$. [14 marks]